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Abstract--The slug flow pattern is associated with an intensive mixing zone at its frontal region, where 
the fast-moving liquid slug front overruns the substrate film ahead. This mixing zone demonstrates intense 
fluctuations and asymmetry of the various flow characteristics, which clearly can not be treated 
analytically. An attempt to provide some insight into the complexity of the hydrodynamic mechanisms 
in the mixing zone is made by applying the k - l , k -~  models and numerically evaluating the various 
hydrodynamic characteristics. Particular boundary conditions at the free-moving interface have been 
developed and incorporated in the numerical simulation. 
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I. I N T R O D U C T I O N  

Two-phase gas-liquid slug flow is considered as an extremely complicated flow pattern. The 
complexity evolves from the intermittency of the flow and the large velocity gaps between the 
various slug regions. Consequently, slug flow incorporates a variety of hydrodynamic mechanisms 
and therefore no single solution strategy is expected to adequately encompass all slug regions. These 
difficulties have been tackled by resorting to a piecewise modelling approach, which utilizes the 
integral continuity and momentum equations, simplified according to the specific physical model 
assumed at each of the slug zones. For instance, separate models have been proposed for the liquid 
slug core, the slug tail (which ends at a relatively thin substrate film) and the adjacent elongated 
large bubble ahead of the fast-moving liquid slug front. Such mechanistic models provided 
reasonable predictions of the slug macrostructure and mean characteristics, mainly average 
cross-sectional velocities and pressure drop over a slug unit; e.g. to name but a few of these models: 
Kordyban & Ranov (1970), Dukler & Hubbard (1975), Nicholson et al. (1978) and Moalem Maron 
et al. (1982) for horizontal slug flow; and Bonnecaze et al. (1971), Fernandes et al. (1983), Orell 
& Rembrand (1986) and Sylvester (1987) for inclined or vertical slug flows. 

It is to be emphasized here that integral approaches in slug modelling, though yielding acceptable 
results when compared with experimental data, are not capable of accounting for the detailed 
velocity distribution and of providing an insight into the associated complex instantaneous 
behaviour of the wall shear stress and other momentum transport phenomena. Understanding the 
fluctuating nature of the phenomena is of great interest, not only for improving the modelling of 
momentum and transport in slug flow, but also from other practical aspects, e.g. the relation 
between flow conditions and observed pipe damage (Kvernvold et al. 1984). 

Among the various slug zones, the hydrodynamics of the frontal region probably are considered 
the most complicated. The fast slug front overruns the relatively slow substrate film ahead. The 
substrate fluid picked-up by the slug front is thus accelerated and mixes in within the front region. 
The mixing region extends well into the slug core region, where a fully-developed symmetric 
velocity distribution is established. Obviously, the frontal region demonstrates intense fluctuations 
and asymmetry of the flow characteristics, such as pressure gradients, wall shear etc. Note that the 
hydrodynamic patterns in the slug front region are expected to resemble those obtained in flows 
into sudden expansions (Bradshaw & Wang 1972). However, the phenomena associated with the 
moving slug front are of a higher degree of complexity due to the moving free interface. 

227 



228 o MOALEM MARON et al 

a. Stationary Coordinates 
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b. Moving Coordinates 

Figure 1. Schematic description of the physical model and coordinates systems. 

In view of its hydrodynamic complexity, the front region has been treated in overall slug 
modelling by partial and unestablished approximations, mainly for estimating its length (Dukler 
& Hubbard 1975). Other basic characteristics, such as pressure drop or wall shear stress variation, 
require a thorough solution of the velocity field. 

It is the main objective of the present work to explore via numerical simulations the flow field 
at the liquid slug front, in an attempt to provide some insight and understanding of the 
hydrodynamics in this rather complicated region. 

2. THE PHYSICAL PICTURE 

A schematic description of the physical phenomena associated with a typical horizontal slug unit 
is given in figure I in both stationary (a) and moving (b) coordinates systems. For simplicity, 
two-dimensional slug flow between parallel plates is considered. An idealized fully-developed flow 
is assumed, whereby a slug unit consists of a large lump of liquid which steadily travels over a thin 
smooth substrate film separating the liquid lumps. The liquid velocity in the liquid slug is several 
times greater than the mean velocity of the substrate film ahead, thus slow-moving material is 
continuously overrun by the fast-moving front of the slug and is accelerated to the fluid velocity 
in the liquid slug, forming a mixing eddy which penetrates a distance lm into the slug front. 
Simultaneously with this pick-up process at the front, the slug sheds liquid from its back, forming 
a trailing decelerating film, to be picked-up by the successive slug front. Clearly, when the rate of 
liquid pick-up at the front equals the rate of liquid shedding at the rear, the length of the slug 
stabilizes (Dukler et al. 1985). 

The idea of a mixing zone at the front accompanied by a shedding process at the back of the 
slug implies a recurrent momentum exchange in the slug. For instance, the boundary layers adjacent 
to the walls are periodically distorted in the mixing region at the front of the slug and are 
reestablished in the body of the slug behind the mixing region (Moalem Maron et al. 1982). A 
fully-developed velocity profile is obtained if the liquid slug is long enough. 

Previous slug modelling refers mainly to the hydrodynamic picture in the slug core and slug trail. 
However, the complicated frontal mixing region has not been treated yet, and therefore demands 
special emphasis in the present work. 

3. GOVERNING EQUATIONS AT THE SLUG FRONTAL REGION 

The slug frontal region, where the slow substrate film ahead is overrun and accelerated, is 
hydrodynamically the more complicated zone and as such is hard to tackle analytically. The present 
treatment of the slug front region is based on a numerical simulation, which has been recently 
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developed by the authors studying the vortex region formed by a wall jet entering a free interface 
liquid bulk (Yacoub et al. 1991; Naot et al. 1989). The governing equations and relevant boundary 
conditions with reference to slug flow, as in figure l(b) are: 

and 

Oa O~ 02¢ 020 
- n  = a y  - a x  = ~ x  ~ + ay  2 [ l l  

'E( 1 U-~x +V-~y = p Ox 2 ~y2 Zxy+ oO-~y(Zry-~xx) , [2] 

where [1] represents the two-dimensional vorticity, n, in terms of a stream function, g,, which 
satisfies the continuity equation, while [2] represents the vorticity transport equation. The stresses 
are modelled by an effective scalar viscosity, v,: 

and 

Hence, [2] becomes 

where 

1 (aa 
v, + ve = v + vt; [3a] 

1 (r,.y - z ~ )  2v, ~ x  " [3b] 
P 
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The eddy viscosity, v,, in terms of the turbulent energy and dissipation (mixing) length, l, is 

v r~t /41,  t12 l 
t ~ -  ~.Q~ ~ . 

In [5] and [6], trk and Cu are constants. 

and 
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In this formulation the vorticity source, Sn, maintains symmetry between the role of the viscosity 
and the stream function, simplifying the accurate central difference discretization of this term. 
Moreover, in the particular form of [4a], the first derivatives of the viscosity, v, (which are large 
close to the wall), are avoided in [4b]. The non-linear use of the effective viscosity in the vorticity 
diffusion term increases the stability and accuracy of the discretization of this term. The effective 
viscosity, v,, in the above equations is related to the molecular viscosity, v, and the turbulent eddy 
viscosity for high Reynolds number, v t. As the liquid slug flow is associated with high Reynolds 
numbers, two turbulence models, k- l  and k-~, aimed at synthesizing an "eddy viscosity" for 
evaluating the Reynolds stresses, have been used in parallel, in conjunction with [l and 2]. The k-I 
model is represented by a partial differential equation for the turbulent energy, k: 

U~x x ~ x x \ ~ x x j + ~ y y  ~ y y  + I I - , ,  [5a] 

where FI and E are the turbulent energy production and turbulent energy dissipation, respectively; 
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The k-~ model includes an additional differential equation for the turbulent energy dissipation, E" 

[71 

with 

k 2 
~,, = c , , - ,  [8] 

( 

where a,, C,~ and C,2 are empirical constants. 
The possibility of deriving a transport equation for the dissipation length directly from the two 

model transport equations for k and c has been used elsewhere (Yacoub et  al. 1991; Naot et al. 

1990). It was shown that for homogeneous turbulence in local equilibrium, fI = c, the transport 
equation for the length scale degenerates to a form that depends on the field geometry and 
boundary conditions only. The degenerated equation yields geometric scales that describe 
qualitatively the dissipation length scales obtained from calculations made with the full transport 
equation for the dissipation. For some simple cases of channel flow the agreement is remarkable. 
However, it has been shown (Naot et  al. 1990) that in the present case the effects of the turbulence 
diffusion, convection and heterogeneity are too significant to be overlooked and the replacement 
of the transport equation for t by a geometric specification of a length scale may affect the results 
substantially. The idea of using geometric specification for the scale was therefore abandoned as 
it was considered to be an oversimplification. 

Equations [1] and [2] are to be solved simultaneously with [5] and [7] and the appropriate 
boundary conditions. These are: 

and 
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Equations [9a, b] represent the no-slip conditions at the two bounding walls in the moving 
coordinates system. However, since [5] and [7] are not applicable at the walls, a logarithmic 
turbulent velocity profile is utilized in the near-wall regions over the first grid. Thus, at y~ = Ay 
(see appendix A): 

o 
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where v* is the local shear velocity. Similar treatment is made near the upper wall over the last 
grid at point y = H - Ay, as detailed in appendix A. Equation [9c] implies that for sufficiently long 
slugs, fully-developed conditions are obtained. 

The most complicated boundary is at x = 0, which is divided into three regions: 

(a) For y < hf, the entry conditions are due to the entering substrate film, whereby 
for a turbulent film condition [9d] becomes: 

, y v  * 
t~=VT--V [ 2 . 5 1 n ( ~ - ) + 5 . 0 ] ;  ~ = 0 ;  

f~= 0a 2.5v*. _ ( ~ ) . _ _  
- t ~ y =  y ' k -3 .3 v * 2  l Y , 

0 = ti dy = @ + 2.5v'y; 

C3;4k3,2 
" -m [1 l a] 1 = 0.4y; ~ -  1 

Note that, k is assumed to decay linearly from its wall value to zero at the free 
surface. However, it is to be noted that values of k and E in this region are very 
small and their contribution is practically negligible. For a laminar substrate film 
condition [9d] reads: 

(b) 

(c) 

2 V f y  . a = V r - - - ,  f = 0 ;  
hf 
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~,= V T y - - -  

hf 
[IIb] 

For y > hf, the gas-liquid interface represents the slug front line where the 
velocity is VT (or zero in moving coordinates). As the gas-liquid interface at the 
slug frontal region is vertical, it was necessary to revise the boundary condition 
for the dissipation, formulated for open channel flow (Hossain & Rodi 1980), 
and adjust it for a vertical surface [Naot et al. (1989); see appendix B]. Indeed, 
as was expected, the numerical tests showed local augmentation of the dissipation 
close to the interface. However, as the region influenced is almost stagnant (in 
the moving coordinates system), the overall effect on the velocity distribution is 
negligible and the use of the simple conditions [9e], based on the premise 
that turbulent energy or dissipation do not cross the free interface, at 
x = 0, hf < y < H, was practically confirmed. 
At x = 0, y = hr, the substrate thin film meets the liquid slug and a shear layer 
is developed due to the abrupt drop in velocity. This is translated into a vorticity 
source, by averaging (t2f~) at point (x = 0; y = hr) along a grid height Ay, which 
includes this point. Since the dominant contribution to the vorticity at the 
"velocity discontinuity region" is due to the singular behaviour of (d~/Oy),  the 
vorticity convected into the adjacent cell, represented in the numerical pro- 
cedures as a vorticity flux corresponding to a vorticity too, becomes: 

r -~  = 2 = u° m°Ay' [12] 

where, Uo is the velocity at the upper layer of the penetrating substrate and fo is 
of the order of unity. The representative vorticity, to o, is thus 

foUo 
too = (2Ay) ' [l 3] 

LIMF 17.2--F 
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which is used as a boundary condition at the point (x = 0; y = hr). The sensitivity 
of the streamline configuration to the specific choice of  .)Co has been studied 
elsewhere (Yacoub et al. 1991). Numerical tests show that streamline contraction 
occurs at the impingement point of the film into the slug for f0 > 1, whereas with 
.)co < 1, streamline divergence is observed. In the present work horizontal stream- 
lines at this point are assumed, and f0 "~ 1 has been used. 

The numerical calculation has been performed with a 20 × 80 grid, with 20 nodes evenly 
distributed in the vertical direction and 80 nodes distributed with variable spacing in the horizontal 
direction (Yacoub 1989), Central point discretization was employed for all the derivatives apart 
from the convective derivatives, for which the upwind technique was used. Using values for some 
variables taken from the former iteration, the linearized equations in the finite difference formulation 
were organized in a mode amenable to the alternating direction implicit integration (ADI) algorithm. 
The grid was swept solving for a whole line or a whole column at each step with a tri-diagonal 
matrix (TDM) solver. Each iteration consists of four grid sweeps vertically, horizontally, backwards 
and forwards (not necessarily in this order). 

To avoid divergence at an early stage in the calculations, the updating of the variables at each 
iteration was relaxed during the first 50 iterations. Convergence was monitored by calculating the 
errors in satisfying the discretized equations for qs and 92. Reduction of the relative errors to 10 
was established within 150 iterations, or 500 grid sweeps consuming 400 (CPU) s on a CDC 6600 
computer. 

Experiments with a line 40 x 80 grid indicated small ( < 1%) grid effects due to the dependency 
of [13] for ~o0 on Ay, and due to the differences between Ay and Ax in the main flow field. Close 
to the wall, thcoretical expressions exist for the dependencies of f2, ~ and vL on the distance from 
the wall. These have been utilized to estimate the discretization errors close to the walls. Indeed, 
the numerical experiments showed small grid effects close to the wall, which may be considered 
as an indication for the entire field. For more details, the reader is referred to the description of 
the numerical method in Yacoub et al. (1991). 

4. C A L C U L A T E D  RESULTS AND DISCUSSION FOR THE SLUG MIXING ZONE 

The initiation of the numerical simulation requires the geometrical parameters H, hf, the slug 
translational velocity, V- r, and the entering flux, ),. As detailed in appendix C, the entering mass 
flux is identified with the slug pick-up rate ),, and is obtained with VT and hf (and other slugs 
parameters) for a given set of liquid and gas superficial velocities, ULS and UGs, and slug frequency, 
f. Clearly, the numerical scheme can be initiated for any given physical situation (defined by the 
geometry and flow rate parameters) of a free wall jet entering into a liquid lump. Here, however, 
the results are presented in relation to an unaerated slug flow pattern (obtained for specified Uc;s, 
Ut.s, .[" and Rs = 1) and by assuming zero drift velocity in the model for lz t (V d = 0 in [C.8]). The 
effect of the drift velocity will be discussed separately (figure 12). 

Figures 2 and 3 show typical if, C and ~, contours along the liquid slug zones for H = 1 cm. and 
various combinations of ULS, Ucs andf[within the observed range for the slug flow pattern (Dukler 
& Hubbard 1975)]. Also included in figure 2(c) are the specific lines of ff = 0 and C = 0, the 
intersection of which defines stagnation points (in the moving coordinates system). Inspection of 
figures 2 and 3 indicates that four stagnation points can be identified; the first is S~, located at the 
vertical free interface x = 0, y > h r, where ~ = 0. Above and below point S~, the f components are 
in opposite directions, both degenerate at S~. The second stagnation point Sz, is situated at the 
saddle-point formed between the large vortex (moving backwards) and the small upper wall vortex 
(moving forwards). The other two stagnation points $3 and $4 correspond to the center points of 
the two vortices. The streamlines at x = 0 first circulate backwards around the large vortex and 
then at some location reverse forwards to the main flow direction. A streamline exists for which 
the flow is just forward, with an inflection point. Below this streamline and far enough downstream 
of the entry of the wall jet, fully-developed if, f and qJ lines are obtained. 

The approach towards a developed flow distribution downstream of the liquid slug (upstream 
in stationary coordinates), with simultaneous stabilization of other related hydrodynamic variables 
is further demonstrated in figures 4-6. In figure 4, the calculated wall shear stresses for the upper 



H Y D R O D Y N A M I C  M E C H A N I S M S  IN S L U G  F L O W  233 

and lower boundaries are compared. At x = 0, where the liquid film meets the liquid slug, the lower 
wall shear stress starts increasing from its film value to an equilibrium level, whereas the upper 
wall shear first decreases very rapidly to a minimum and then increases again before it decreases 
to its equilibrium level. The extremum points depend on the location and size of the small and large 
vortices. The equilibrium levels of both the lower and upper shear stresses correspond to the wall 
shear of fully-developed flow with a flow rate of (V  T - Vs)H. Included in figure 4 is a curve-fit of  
x 0.2, based on the developing boundary layer wall shear stress obtained on a continuous moving 
surface in a turbulent regime (Sakiadis 1961). As is shown in figure 4, a better fit is obtained for 
the higher velocities where the flow is fully turbulent. This implies that the use of  a boundary layer 
model in slug modelling may be reasonable (Moalem Maron et al. 1982; Dukler et al. 1985). 

One of the main characteristics of  slug flow is the (periodic) variation in the pressure drop. An 
overall momentum balance between the entry at x = 0 and an x location within the liquid slug reads 

1[; f:' ;: ;o' ] P . - P o = - ~  (z..,+ vwb) dx + p ~ d y  - p ~ ] d y  - p g ( h f - y ) d y -  p g ( H  - y ) d y  , 

[14] 

whereby 

APs = Px - -  Po = APf + AP a + AP h. [ l  5] 
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Thus, [14] and [I 5] indicate that the total pressure variation in the liquid slug is composed of three 
components due to friction, acceleration and hydrostatic head, APt, APa, and APh, respectively. 
The latter, is found to be practically negligible here (H = 1 to 2 cm), compared with the frictional 
and acceleration contributions. As is demonstrated in figure 5, in the well-developed region the 
acceleration term becomes constant, while the frictional term maintains the expected constant 
slope. It is to be noted that a negative acceleration pressure drop may result [as in figure 5(a)] at 
the slug entry region where the substrate film enters the slug core. This indicates that initially the 
entering substrate jet (in moving coordinates) accelerates due to local contraction [see figure 3(a)]. 
Similar contraction and acceleration effects are well-known in jet flow through sudden expansions. 

Figure 6 represents the dissipation rate calculated in two ways. The first method is direct 
integration of the local dissipation, e, as evaluated along the numerical procedure 

The second method is based on applying an energy balance, whereby the total dissipation, from 
the entry to any downstream location x, is obtained by integration of the wall shear, while 
considering the gain in pressure and kinetic energy. Thus, 

f: ;: ) -3 dy ~ dy [17] Ed = VT ( % , + % b ) d x - ' ] ( P x - P o ) - S p k J  ° ux - 

Substituting [14] for the pressure term and [C.I] for 7 in [17] yields: 

As is demonstrated in figure 6, the agreement between [16], which represents a direct integration 
of the dissipation rate and [18], which is based mainly on velocity profiles in the near-wall regions 
reinforces the validity of the whole numerical simulation, including the use of the k-~ model. 
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Figure 6. Energy dissipation rate along the liquid slug core. 

Note again, that the region where the slope of the dissipation rate remains constant represents 
fully-developed conditions. However, with weak vortices [figure 6(a) which corresponds to 
figure 3(c)], the change in the dissipation rate across the mixing zone is moderate, while for strong 
vortices [figure 6(b) which corresponds to figure 3(d)] a sharp rise in the dissipation rate in the 
mixing zone is demonstrated. The contours of equal vorticity lines and the turbulent structure in 
terms of equi-turbulent energy lines and equi-dissipation length lines are detailed elsewhere 
(Yacoub et al. 1991). 

As stated earlier, the main objective of the present paper is to derive some insight 
and characterization of the frontal region. For instance, one can identify the core of the 
front region by the location of the large vortex centre, which is one of the four stagnation 
points located in this region. Figure 7 includes the dimensionless horizontal and vertical 
coordinates (x~,y~) of the large vortex centre as functions of the input slug parameters. 
Clearly, large xc implies a larger vortex, hence an extended mixing zone. The non- 
dimensional vertical position of the vortex centre is practically constant, y¢/H = 0.5 (see also 
table I). 

The characterization of the mixing zone length is of particular interest in slug modelling. In view 
of the physical picture described above (as in figures 2-6), the following three characteristic lengths 
for the slug front region may be defined [see figure 3(a)]: 

(a) The length 1¢, defined by the location of the external closed streamline which 
originates at the discontinuity point, and envelopes the large vortex. This 
streamline separates the liquid which circulates within the eddy from that which 
continues forwards in the main flow direction, and therefore corresponds to 
¢, = 7 = hr(VT - Vf). 

(b) The Icngth, Ir, bcyond which no flow rcvcrsal takcs place. The streamline 
which defines Ir is thc one demonstrating an inflection point (at x = I,), 
beyond which the axial velocity components are always directed into the liquid 
slug core. 
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Figure 7. Location of a large vortex centre for various operational conditions. 

(c) The distance, ld, is related to the developing flow region and is defined here as 
the distance where the dissipation rate differs by less than, say 5% (a rather 
arbitrary criterion) from its ultimate level at fully-developed (one-dimensional) 
flow. 

Figures 8 10 summarize the above characteristic length variation with the basic input slug 
parameters, Uc, s, ULS and f. As expected, the length of  the circulating zone, 1~, is smaller than that 
of the reversed flow region, It, both of which are smaller than the required distance for establishing 
fully-developed flow (note that lr crosses la in figure 9, implying that the arbitrary 5% criterion used 
to obtain ld does not really ensure the establishment of fully-developed flow). Included in figures 
8-10, is the empirical correlation suggested by Dukler & Hubbard (1975) for the length of the 
mixing zone, It, as used in previous studies. As is shown in the figures, this correlation poorly 
represents the length of the frontal region and its variation with the various slug parameters. 

Inspection of  figures 8-10 indicates that, in general, the effects of ULS and UGs on 1~, lr or ld are 
moderate, except for the low range of Ucs. A rather more pronounced effect is shown in figure 10 
with the slug frequency. It is to be recalled at this point that the characteristics of circulation zones 
formed by entering jets are known to be determined mainly by the jet geometry and entering flow 
rate, both of which are identified in the case of slug flow with the relative substrate thickness, Rf, 
and the slug Reynolds number, Res = D VJVL. Therefore, the calculated Rr, as obtained based on 
UGs, ULs and f, are included in figures 8-10 for further interpretation. Indeed, figures 8-10 point 
out a consistent trend, whereby the mixing zone expands with decreasing Rr, which embodies the 
effects of UGs, ULS and f through the slug model governing equations (appendix C). The role of 
Rr is summarized in figure ! i, showing that the length of the mixing zone is mainly correlated by 
the Rf and it decreases with increasing Rr. 

Figures 2-11 relate to a given geometry H = 1 cm (or D h = 2 cm). The effects of scale-up to larger 
conduits are demonstrated in table 1, with reference to H = 2cm (or Dh = 4cm). Obviously, 

Table 1. Typical slug characteristics 

H 1" r V T - V~ V T - Vf 1~ l, la x~ y¢ 
(cm) Rf (re;s) (m/s) (m/s) H H H H h 

ULS= l.Om/s Uos = l.Omls, f =  l.Os - t  
1.0 0.160 2.29 0.29 1.79 3.4 4.56 4.30 1.18 0.44 
2.0 0.190 2.29 0.29 1.51 2.91 4.09 4.48 1.03 0.47 

ULs = 3.Orals, U~;s= l.Om/s, f =  l.Os -I  
1.0 0.164 4.57 0.57 3.48 3.58 4.53 4.48 1.24 0.46 
2.0 0.190 4.57 0.57 3.0 3.14 4.01 4.32 1.05 0.47 

ULS = 3.Ore~s, Uos = 3.Ore~s, f = l.Os I 
1.0 0.149 6.86 0.86 5.76 3.75 4.7 4.85 1.49 0.46 
2.0 0.160 6.86 0.86 5.38 4.16 4.81 4.57 1.48 0.47 
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increasing the geometrical dimensions requires significantly larger computational grids and 
therefore the results in table 1 are only aimed at identifying the typical trends of  the mixing 
zone characteristics in scaling-up to larger conduits. In principle, increasing H, increases both 
Rex and Rf. However, the resulting overall effect of  H is rather mild. Consequently, the 
various non-dimensional characteristic lengths can be considered practically unaffected by the 
conduit size. 

The results presented so far assume zero drift velocity, where for n = 7 in [C.8], VT/V~ = 8/7. 
Figure 12 shows the effects of  including a drift velocity, Vd, in modelling the slug translational 
velocity, as described in appendix C. For Dh = 2 in [C.9], V d = 0.24 m/s which affects an increase 
of 2-20% in the Vr range studied here. In general, for identical ULs, UGs and f the inclusion of 
the drift velocity results in increased pick-up rate and substrate film thickness, R~, as implied by 
[C.I]. Therefore as Rf increases, the mixing zone lengths/+ and/r decrease (as expected in view of 
figure IlL and are similarly well-correlated by the corresponding Rr as shown in figure 12(b). 
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However, for identical Rf, comparison of figures 11 and 12(b) indicates that higher l~ or lr are 
obtained for a non-zero drift velocity. 

On the other hand, ld increases for a non-zero drift velocity since the centre velocity in the 
developed region (in moving coordinates) in this case asymptotically approaches a finite level, Vd 
(but not zero as with zero drift). 

Note that the inclusion of drift velocity is in a sense equivalent to changing the VT/V~ slope in 
[C.8] due to utilizing a different velocity profile in the slug core. Thus, the trends expected with 
different IA,/V~ can be deduced from the above-mentioned effects of a non-zero drift. 

5. A P P L I C A T I O N  TO SLUG FLOW M O D E L L I N G  

As described in appendix C, the complete set of governing equations for slug flow have been 
derived, based on continuity equations in stationary and moving coordinates systems, together with 
the momentum equations for the various slug zones. As noted earlier, previous studies on slug 
modelling utilized an ad hoc unestablished model for the mixing zone length, and referred only to 
accelerational pressure losses in this region. 

Figure 13 shows typical variations of the frictional pressure losses in the slug front region relative 
to the ultimate level of the pressure drop in the well-developed slug core. The general trends in 
the entry region of the substrate film into the liquid slug resemble those obtained for sudden 
expansions (Bradshaw and Wang 1972) and are understandable in view of the circulation patterns 
shown in figure 3. The local frictional pressure gradient initially decreases due to the steep decrease 
in the upper wall shear stress very close to the entry plane at x = 0 (figure 4), then it recovers due 
to the cumulative shear stress built-up on the upper and lower walls. Finally, it drops back toward 
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its equilibrium level, whereupon the entry effect diminishes. Integrations of various plots, such as 
those shown in figure 13, indicate that the average frictional pressure drop in the mixing zone differs 
by < 5% from its asymptotic value far downstream. Thus, the contribution of the mixing zone to 
the friction pressure losses can be estimated reasonably by 

(Aef)mixing= rlrn(cP'~d'~,'~[m(~x) [191 

where I m stands for the various definitions of the mixing region length, as discussed with reference 
to figures 8-12. It is of interest to add that the inclusion of a drift velocity according to [C.9] does 
not alter the validity of [19]. Thus, [19] may be regarded as a rather general approximation which 
bears practical importance. 

6. CONCLUDING REMARKS 

The front of the slug core demonstrates circulating patterns (in moving coordinates) and intense 
local fluctuations and asymmetry of the hydrodynamic characteristics. Thus, the mixing zone is 
evidently of significance in predicting the overall transport rates in the slug flow pattern. The mixing 
zone length has been found mainly to be a function of the substrate film thickness. The wall shear 
at the upper surface is consistently higher than that of the lower tube surface and resembles that 
of a developing turbulent boundary layer. 

The average frictional pressure drop in the mixing zone has been found to be practically equal 
to the well-developed frictional loss. Based on this result, its overall contribution to the total 
pressure drop can be conveniently included in slug modelling. The numerical simulation for the 
flow within the liquid slug core provides some sight into the various hydrodynamic characteristics, 
velocity contours, streamlines, stagnation points, vorticity, wall shear, pressure drop terms and 
turbulent energy and dissipation. 
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A P P E N D I X  A 

Thin Shear Layer Boundary Conditions 

Close to the two plates, the numerical solution is matched with an analytic specification of the 
thin shear layer characterized by the logarithmic velocity profile and local equilibrium turbulence. 
The velocity profile is assumed to be logarithmic in the physical (stationary) coordinates system: 

where v* = v* and q = y for the bottom plate, and v* = v* and r /= H - y for the top plate. By 
integration, the stream functions adjacent to the bottom and top plates become: 

and 

0,='/-  ~drl=',,-(H-y) VT-2.5v~* In v , * ( - y )  +1  . [A.2bl 
0 

In the thin shear layer the ~ component vanishes and the vorticity depends on dti/dy only, thereby 

2.5v* 
fib = -  bottom surface, [A.3a] 

Y 
and 

--2.5v* 
f t  - (H - Y~----3 ' top surface. [A.3b] 

The specification of v* determines the stream function and the velocity within the thin shear layers. 
The thin shear layer is also characterized by the degeneration of the turbulence energy production 

r / (=-u;u '~Oa, /~xj)  to 

- -  da 
/7 = - u'v' - - .  [A.4] 

dy 
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Assuming the total shear stress Ztot = P ( - u ' v '  + v dtT/dy) to be locally independent of the distance 
from the wall, and equal to the local shear stress pv*:, we note that in view of [A.1], the second 
component v O~/Sy(= v*22.5/y +) becomes negligible within the thin layer 30 < y + < 100, whereby 

u'v~ = v~ 1, for the bottom plate, [A.5a] 

and 

u'v~ = -v~ .2, for the top plate. [A.5b] 

Another important assumption is the local equilibrium, c - - H ,  assumed to characterize wall- 
dominated logarithmic flows. Finally, the numerical solution matched uses the scalar eddy viscosity 

u'v'  - -C"k2  dr7 
dy [A.6] 

Multiplying the I.h.s. of [A.6] by the r.h.s, of [A.4] and the r.h.s, of [A.6] by H, and using E = 11, 
one may obtain a condition which relates the energy at the shear layer to the local shear velocity 
~,,* whereby 

U* 2 'p  
kp = x / ~ '  [A.7] 

Estimation of the dissipation rate c is obtained by using [A.4] with the substitution of [A.5] for 
the stresses and [A.3] for d~/dy: 

2.5v .3 
~b- for the bottom plate, [A.8a] 

Y 

and 

2.5t'.t .3 
~ ( H - y )  for the top plate. [A.8b] 

Using [A.7] the following condition is obtained: 

C~4k3 2 - v*3 [A.9] 
% - l o Ip 

Equation [A.9] relates the dissipation to the energy and dissipation length scale, with: 

lb = 0.4, for the bottom plate, [A.10a] 

and 

l, = 0 . 4 ( H - y ) ,  for the top plate. [A.10b] 

The matching procedure starts with the determination of v* using either [A.2a] or [A.2b] and the 
values of ~, at the second grid node. Then, all the four variables ~, fl, k and ¢ are calculated for 
the first grid node, designed to be away from the wall. These values serve as boundary conditions 
for the numerical procedure that starts at the second grid node. 

Finally, the inlet conditions are also based on the thin shear layer approximation. Here, however, 
the shear velocity v*l~=0 = v,* is determined from the condition ~,(hr) = 7, whereby 

Equation [A.l 1] is to be solved for l,~*. 

A P P E N D I X  B 

A Free Surface Renewal Boundary Condition at the Slug Front 

Consider a typical eddy moving from the flow field interior towards the free surface. As the eddy 
hits the surface, the free turbulent energy, Ea, may serve in the formation of a new surface. 



HYDRODYNAMIC MECHANISMS IN SLUG FLOW 243 

Denoting the energy needed to overcome the surface tension, a, and to build the new surface of 
a completely separate droplet by Es, we may state that 

E~ < Es [B.I] 

is the condition for an unbreached surface. For a typical eddy size o f / ,  E, is estimated by 

2 ~2.  ";2 2 [B.2] E a = ~ P  r , ,  ~ , ~ k .  

Generally, the surface curvature radius is larger than that of the eddy. However, for the special 
case where droplets of the eddy size just attempt to breach the interface, I is used also for estimating 
E~. (,)2 

E~=4n ~ tr. [B.J] 

Utilizing [B.2] and [B.3] in [B.1], the latter becomes 

lk  
p -  < 18. [B.4] 

O" 

Equation [B.4] represents a local turbulent energy condition adjacent to an open surface. 
The eddies moving outward contribute to an outward energy flux while the inward rejected 

moving eddies contribute to an inward energy flux. For an unbreached open surface, we expect 
the inward energy flux to be equal to the outward energy flux and thus the open surface is 
energetically insulated, whereby 

Ok 
- o .  [ B . 5 ]  

However, since the open surface dynamics correlates the rejected eddies to the incoming eddies, 
enhanced coherence and high collision density are expected in comparison with the conditions in 
a symmetry layer. It was therefore suggested to model such a situation using the concept of 
dissipation flux (Naot et  al. 1989): 

v tdc  1 Ea 
J, J =  [B.6] 

a, 0x, pz rAs 

Equation lB.6] relates the dissipation flux to the energy flux J doomed to dissipate due to "wrong 
timing". Using estimations of typical time and surface scales, 

1 n l  2 
As = - -  [B.7] T - x~.2 ~ ' 4 '  

and using for the dissipation length the typical length scale 

l = 2.5C~"4k3'2/E, [B.81 

[B.6] becomes 

& c 2 0.4/.~2\2 a, 
~-~ - ~t~-~; ~t = - - ~ , k ) 3  C7~ '4" [B.9] 

Experiments with one-dimensional open channel flow suggested that 2.43 < ct < 3.50, where 
ct = 2.43 has been found to properly replace the Hossain & Rodi (1980) condition, and ct = 3.50 
was found to describe the data of Ueda et al. (1977). 

It is to be noted, however, that at the slug front free interface, conditions [B.9] which directly 
affect the variation of the turbulent viscosity in the free interface vicinity, do not influence the 
streamline patterns, as the velocity derivatives in this region are small. Therefore, practically 
condition [B.9] may be replaced by Oc/~x ,  = O. 
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APPENDIX C 

Governing Equations for Modelling the Slug Flow Pattern 

Following the physical picture described in section 2, the equations of continuity and momentum 
for the gas and liquid phases are stated with reference to a slug travelling at a constant velocity, 
V r. For a viewer moving with velocity Vv, the integral continuity equations for the liquid and gas 
phases read (see figure 1) 

HRf¢(Vf¢- Vx)= HRr(Vf- VT)= HR~(V~- V-r)= - 7  [C.l] 

and 

p6H(l - Rf,)(Vc~- Vx)= pcH(1 - Rr ) (Vr-  VT)= pcH(I -- t~)(V,-- VT), [C.2l 

where, H, V and R denote plate spacing, local downstream average velocity and liquid hold-up, 
respectively. The subscripts fe, f and s denote various locations at the equilibrium film, the 
varying thickness slug trail region and the liquid slug core region. For a fully-developed slug 
the apparent (negative) discharge rate of the liquid, - y ,  reviewed in moving coordinates, 
is constant. The constant rate, y, is also the rate at which liquid is picked up by the fast- 
moving slug front from the slow-moving substrate film ahead which is continuously shed at 
the same rate at various locations along the slug trail. Clearly, the local actual discharge 
rate with respect to stationary coordinates, is a variable quantity with time. An overall 
mass balance, which refers to the mass of liquid crossing a plane normal to the main flow 
during the slug period, l / f ( f i s  the slug frequency), is related to the liquid flow rate per unit width, 
WE, by 

f -PL VsHR~dt +PL VfHRfdt +PL Vr~HRf~dt, [C.3] 
do 

where ts, tf and tf, denote the time duration required for the slug section, the slug trail and the 
equilibrium film substrate to pass a fixed point. Introducing dt = dx/Vr and utilizing [C.I] to 
eliminate the products (VR)s.f.f, in [C.3], the latter becomes 

f 
WE -- pL HRsls + pL H Rrdx + pL HRfelf¢ PL't' . Vr [C.3a, b] f - - f - ,  l~+lr+lr~=lr- f .  

A similar mass balance in stationary coordinates can be applied for the gas phase. Instead, an 
overall volumetric balance for the gas and liquid phases is performed, whereby the velocity of the 
slug core is 

Vs = \ PL PG // 
[C.41 

where ULS and UGs are the superficial liquid and gas velocity, respectively. 
A momentum balance on the slug trail which includes inertia, gravitational and interfacial shear 

forces yields the rate of film thickness variation in the slug trail: 

d R f  Tw - Ti 

dx pry 2 ' 
PLgH2Rr- (HR~) 

R r = R s  at x = l s ,  [C.5] 

where the local interfacial shear, T~ and ~w, in the slug trail are estimated by the corresponding 
friction factors, f c  and f t ,  evaluated on the basis of the hydraulic diameter (Yacoub 1989). 

Equations [C.1]--[C.4] relate the average velocities at the various slug zones to the shedding rate 
and the slug translational velocity, V T. The latter, represents the slug front velocity, which for 

fully-developed slug flow is identical to the bubble nose velocity at the rear of the liquid slug, Vr~. 
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The velocity VN, in turn, is related to the velocity profile ahead. Utilizing the nth power law for 
turbulent flow at the rear of the slug, the velocity distribution is 

u / y \ t . , ,  

Vm=~H~) (2)l 'n , u :  "__/_~ stationary coordinate, [C.6a] 

V~" = moving coordinate, [C.6b] 

where V m denotes the maximum velocity at the midpoint, y = H/2,  and is related to the average 
slug velocity, V s by 

n + l  
Vm - V,. [C.7] 

n 

As is common in horizontal slug modelling, the bubble nose velocity VN is taken to be equal 
to the sum of the maximum liquid velocity ahead, Vm, and the drift velocity, V d. Therefore, for 
fully-developed slug [C.I] and [C.7] yield 

1 n + l  
7 = HR~[VT+(n  + l)Vd], VT= V~+ V d. [C.8] 

n + l  n 

A non-zero drift velocity implies a finite slip between the phases. For horizontal slug flow 
Benjamin (1968) and Bendiksen (1984) proposed 

vd = 0.54v B. Ec.91 

Thus, by adding the drift velocity, Vj, the velocity at the centreline approaches lid far downstream 
(in the moving coordinates system) instead of approaching zero in the case of zero drift. Clearly, 
the relative contribution of the drift velocity becomes more significant for low V s. Note also, that 
the liquid hold-up in the liquid slug is required to initiate the calculation procedure. However, for 
relatively low V, (low gas rates), unaerated slugs are obtained with R~ _~ 1.0 (Moalem Maron et 
al. 1982; Barnea & Brauner 1985). 


